Robust Cylinder Fitting in Three-dimensional Point Cloud Data

نویسندگان

  • Abdul Nurunnabi
  • Yukio Sadahiro
  • Roderik Lindenbergh
چکیده

This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD). Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete data, as street poles for example are only scanned from the road. Moreover, existence of outliers is common. Outliers may occur as random or systematic errors, and may be scattered and/or clustered. In this paper, we present a statistically robust cylinder fitting algorithm for PCD that combines Robust Principal Component Analysis (RPCA) with robust regression. Robust principal components as obtained by RPCA allow estimating cylinder directions more accurately, and an existing efficient circle fitting algorithm following robust regression principles, properly fit cylinder. We demonstrate the performance of the proposed method on artificial and real PCD. Results show that the proposed method provides more accurate and robust results: (i) in the presence of noise and high percentage of outliers, (ii) for incomplete as well as complete data, (iii) for small and large number of points, and (iv) for different sizes of radius. On 1000 simulated quarter cylinders of 1m radius with 10% outliers a PCA based method fit cylinders with a radius of on average 3.63meter (m); the proposed method on the other hand fit cylinders of on average 1.02 m radius. The algorithm has potential in applications such as fitting cylindrical (e.g., light and traffic) poles, diameter at breast height estimation for trees, and building and bridge information modelling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Template-based Point Cloud Modeling for Building Model

We introduce a novel template-based modeling technique for 3D point clouds sampled from unknown buildings. The approach is based on a hierarchy algebraic template to fit noisy point clouds with sharp features. In the hierarchy template, the first-level, i.e., the lowest-level, contains three kinds of primitive geometries: plane, sphere, and cylinder. These primitive geometries are represented i...

متن کامل

Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area

Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...

متن کامل

A Constrained Delaunay Triangle Mesh Method for Three-Dimensional Unstructured Boundary Point Cloud

A constrained Delaunay triangle mesh method is presented to recover the surface from the three-dimensional unstructured boundary point cloud. The surfaces of different three-dimensional object models are recovered by this triangle mesh method. The radius of the tested cylinder model can be accurately estimated from the derived maximum principle curvature. The derived minimum principle curvature...

متن کامل

Robust methods for feature extraction from mobile laser scanning 3D point clouds

Three dimensional point cloud data obtained from mobile laser scanning systems commonly contain outliers. In the presence of outliers most of the currently used methods such as principal component analysis for point cloud processing and feature extraction produce inaccurate and unreliable results. This paper investigates the problems of outliers, and explores advantages of recently introduced s...

متن کامل

Efficient Hough Transform for Automatic Detection of Cylinders in Point Clouds

We present an efficient Hough transform for automatic detection of cylinders in point clouds. As cylinders are one of the most frequently used primitives for industrial design, automatic and robust methods for their detection and fitting are essential for reverse engineering from point clouds. The current methods employ automatic segmentation followed by geometric fitting, which requires a lot ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017